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EFFECT OF CONSTITUTIVE MODELLING ON THE
DYNAMIC DEVELOPMENT OF SHEAR BANDS IN

VISCOPLASTIC MATERIALS*

R. C. Batra and C. H. Kim
Department of Mechanical and Aerospace Engineering

and Engineering Mechanics
University of Missouri-Rolla

Rolla, MO 65401

ABSTRACT. We model the viscoplastic response of a HY-1O0 steel by a Power
law, and flow rules proposed by Litonski, Bodner and Partom, and Johnson and
Cook. Each of these flow rules is first calibrated by using the torsional
test data at a strain-rate of 3,300 sec "I . These material models are Lhen
used to study the thermomechanical deformations of a block made of the HY-100
steel and undergoing simple shearing deformations at a nominal strain-rate of
5000 sec 1 . A material defect is simulated by assuming a non-uniform initial
temperature distribution within the block. Whereas all of the flow rules used
predict a rapid drop of the shear stress as a shear band forms, only for the
Litonski Law for nonpolar materials, does an unloading elastic wave emanate
outwards from the shear band.

INTRODUCTION. Noting that Batra (1987) has briefly reviewed the work done
on shear bands till 1986, we discuss below some of the work done since then.
For strain-rate hardening but thermally softening materials Wright and Walter
(1987) found that the shear stress within a band collapses rapidly as the band
grows. Batra and Kim (1989a) accounted also for material elasticity and work
hardening effects and found that if the rate of collapse of the shear stress
is large, then an unloading elastic wave emanates outwards from the shear band
and propagates towards the boundaries of the specimen. The development of
shear bands in plane strain problems have been studied, among others, by Anand
et al. (1988), Needleman (1989), LeMonds and Needleman (1986a,1986b), Batra
and Liu (1989a,1989b). These works have employed different flow rules and
have modeled a material defect by introducing either a temperature perturba-
tion or assuming the existence of a weak material at the site of the defect.
Batra and Kim (1989b) have recently studied the development of a shear band in
a block of HY-1O0 steel undergoing overall simple shearing adiabatic deforma-
tions and compared computed results with the experimental observations of Mar-
chand and Duffy (1988). They found that the dipolar theory due to Wright and
Batra (1987) and Batra (1987, 1989) and the Bodner-Partom (1975) law predict
most of the features of the shear band.

Je note that Molinari and Clifton (1987), Tzavaras (1987) and Wright
(1989) have studied the problem analytically. For rigid/perfectly plastic
materials, Wright (1989) has developed a criterion that ranks materials
according to their tendency to form adiabatic shear bands. Hartley et al.
(1987), Giovanola (1987), and Marchand and Duffy (1988) have reported the
observed histories of the temperature and strain within a band as it develops.

Here we presume that the torsional experiments on thin-walled steel tubes

can be analyzed by studying the thermomechanical deformations of a viscoplas-

*Supported by the U.S. Army Research Office Contract DAAL 03-88-K-0184 to the

University of Missouri-Rolla.
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tic block undergoing overall adiabatic simple shearing deformations. We find
the values of the material parameters appearing in different flow rules by
solving an initial-boundary-value problem and comparing computed results with
the experimental stress-strain curve at a nominal strain-rate of 3,300 sec "1

These flow rules are then used to compute the initiation and growth of a shear
band when the applied nominal strain-rate is 5,000 sec "1 . It is found that
the rate of stress drop during the growth of a shear band as predicted by the
Bodner-Partom law and the dipolar theory due to Wright and Batra (1987) is

similar to that observed experimentally.

GOVERNING EQUATIONS. In terms of non-dimensional variables, equations
governing the thermomechanical deformations of a viscoplastic block undergoing
overall adiabatic deformations are (e.g. see Batra and Kim (1989a))

PV- (s - la, y),y 0< y < 1, (2.1)

- k 0,yy + s 7p + £da, 0 < y < 1, (2.2)

s (Vy - 'Yp), (2.3)

a - w2(v,y - dp), (2.4)

Yp g(s,a,p,dp,O, ), (2.5)

- h(s,a,7p,dp, , ). (2.6)

These equations, written for dipolar materials, reduce to those for non-
polar materials when 2 is set equal to zero. Here p is the mass density, v
-e veiocitv of a material particle in the direction of shearing, a superim-

posed dot indicates the material time derivative, s is the shearing stress, 2
a material characteristic length, a the dipolar stress, and a comma followed
by y signifies partial differentiation with respect to y. Furthermore, k is
the thermal conductivity, lp the plastic strain-rate, dp the dipolar plastic
strain-rate, A the shear modulus, and 0 is the temperature change from that in
the reference configuration. Equation (2.1) expresses the balance of linear
momentum and (2.2) the balance of internal energy, equations (2.3)-(2.6) are
constitutive relations. The different viscoplastic flow rules differ in the
functional forms of g and h and a-,-. gien below in the next section.

For the initial conditions we ta,.-

v(yO) - O,s(yO) - Oa(y,O) - 0, 0(y,O) - (l-y2) e2 5 y2  (2.7)

That is, in the initial rest state of the block, it is taken to be stress
free. The initial temperature distribution simulates the defect or inhomoge-
neity in the block assumed to be present near the point y - 0 and the value of
e represents the strength of the defect.

We presume that the overall deformations of the block are adiabatic and
the lower surface is at rest while the upper surface is assigned a velocity
that increases linearly from 0 to i in time tr and then stays at the constant
value of 1.0. Thus,

0,y(O,t) - 0, O,y(lt) - 0, v(0,t) - 0, (2.8)

v(lt) - t/tr, 0 < t < tr, (2.9)
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- i, t > tr,

and for dipolar materials, we also assume that

a(Ot) = 0,a(lt) 0 0. (2.10)

Computations for the domain -1 < v < I and with boundary conditions o(-l,t)
0,a(l,t) - 0 have given a(0,t) = 0.

3. VISCOPLASTIC FLOW RULES. In order to calibrate the various flow rules
against the shear stress-shear strdin curve given by Marchand and Duffy (1988)
for a strain-rate of 3,300 sec -1 , we solved numerically, the initial-
boundary-value problem outlined above with

s(y,o) - 1.0,yp(y,o) - 0.012, v(y,o) - y,O(y,o) - 00 c, e - 0,

tr - 0.033, p - 7,860 kg/m3,c - 473 J/kgoc, k - 49.73 w/m 2 °c, H - 2.5 mm,

Yo - 3,300 sec "-l

Here H is the height of the block and -o is the average applied strain-rate.
With no initial temperature perturbation, the block deforms uniformly and

homogeneously and the dipolar effects vanish identically. As far as possible
we kept the values of the strain-hardening exponent and the strain-rate-

hardening exponent equal to those given by Marchand and Duffy (1988). and
adjusted the values of other parameters till the computed stress-strain
curve came out close to that given by Marchand and Duffy.

3.1 Litonski's Law for Nonpolar and Dipolar Materials. Wright and Batra
(1987) generalized the constitutive relation proposed by Litonski (1977) to be
applicable to nonpolar and dipolar materials. Batra and his co-workers
(1987, 1988, 1989) have used it to study the initiation and growth of shear
bands. It may be written as:

A
= As, d - - a, (3.1)

i/m

A -max 0, - l )/bse  (3.2)

(Il-,6) (l+ _)n

se - (s2 + a2 )1/2 , (3.3)

2
p Ase/(l + _)n (3.4)

0
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Here V can be viewed as an internal variable that describes the work hardening
of the material. Its evolution is given by equation (3.4). In equation
(3.2), (1-46) describes the softening of the material due to its heating, b
and m characterize its strain-rate hardening, and W. and n its work hardening.
The following values of material parameters resulted in a stress-strain curve
that was close to the one observed experimentally.

a - 0.00185/°c, wo - 0.012, n - 0.107, m = 0.0117, b - 104 sec, 2 = 0.005

3.2 Power Law. For nonpolar materials and assuming that there is no
loading surface, this flow rule for the HY-100 steel can be written as

9.145 -64.103

.P (10-4) s85.47 f 0  ] 
(3.5)

0.012 300

Here 6 is the current temperature in degrees Kelvin and y is the total strain

at a material particle,

3.3 Bodner-Partom Law. For the HY-100 steel, the constitutive relation

proposed by Bodner and Partom (1975) can be written as

n
pY 108 exp - K2  n = K = 1600 - 300 exp (-5 W,)

L 2 3s J

Here 9 is the absolute temperature of a material particle and "4p is the

plastic work done.

3.4. Johnson-Cook Law. The constitutive relation proposed by John-
son and Cook (1983) takes the following form for the HY-100 steel.

-f exp [x { (0 .45 + 1.433 yp0.107) (1-TO .7 ) - 1.0 /0.0277 ( .

(3.7)

T - (8 - 0o)/1200.

Here 0 equals the ambient temperature.

4. DETERMINATION OF THE SIZE OF THE PERTURBATION. Here we model the
cumulative effect of the change in the thickness of the specimen and possibly
the slight variation in the material properties by assuming a nonuniform ini-
tial temperature distribution as given by Eqn. (2.7). For different flow
laws, the value of e was determined so as to initiate a shear band, as sig-
nified by a rapid drop in the shear stress, at a value of the average strain
close to that found experimentally. The initial-boundary-value problem out-

lined in Section 2 with tr - 0.033 was solved by the finite element method.
Values of c equal to 10 c, 20 c, 50 c and 90 c for the Litonski Law for
nonpolar and dipolar materials, Power Law, and the Bodner-Partom Law and the

Johnson-Cook Law, respectively, result in stress-strain curves shown in Fig.
i.
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Fig. 1. Shear stress-shear strain curves computed with different flow
rules and with different initial temperature perturbations.

-experimental, .. .. Bodner-Partom . ...... Litonski (non-

polar), Litonski (dipolar) Power,

Johnson-Cook.

These curves vividly reveal that until the time the shear stress begins to
drop rapidly, all of the flow rules considered predict material behavior in
reasonable agreement with the experimental observations. For nonpolar mate-
rials Litonski's Law, the Power Law and the Johnson-Cook Law give essentially
a catastrophic drop in the shear stress with virtually no increase in the
nominal shear strain. This does not agree with the experimental data since
Marchand and Duffy observed that during the drop of the shear stress, the
nominal strain increases by approximately 5 percent. The Litonski Law for
dipolar materials and the Bodner-Partom Law for nonpolar materials do predict
the gradual drop in the shear stress in agreement with the experimental data.
However, for the Bodner-Partom Law the shear stress does not drop as much as
it does during the tests and it reaches a plateau.
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5. RESULTS FOR A NOMINAL STRAIN-RATE OF 5,000 SEC. - I
. With the values of

material parameters and the size of the temperature perturbation found above
kept fixed, we increased the prescribed velocity on the up per boundary so as
to deform the block at a nominal strain-rate of 5,000 secT. Note that the
values of some of the non-dimensional variables appearing in the governing
equations will change. For each one of the flow rules used, the shear stress
attained a maximum value when the average shear strain was approximately equal
to 0.30. For subsequent deformations, we have plotted in Figs. 2 and 3 the
evolution of the shear stress and the particle velocity within the specimen.
The value of the nominal shear strain at which the shear stress drops and the
shear band initiates depends upon the flow rule used. However, in each case,
the value of the nominal shear strain when a band initiates is noticeably more
than the value at which the shear stress attains a maximum value.

For nonpolar materials, the rate of drop of the shear stress is highest
for the Litonski law as compared to that for the other three flow rules used.
For the Bodner-Partom law, the shear stress drops initially, but then seems to
reach a plateau. For the Power law, the shear stress oscillates both in space
and time and there was no unloading wave observed. With the Johnson-Cook law,
the shear stress drops almost as rapidly as with the Litonski law, but seems
to stay uniform throughout the specimen. For the Litonski law, as the shear
stress drops, an unloading elastic wave emanates out of the shear band and
travels towards the other end of the specimen. Batra and Kim (1989a) found
this unloading wave and their computed wave speed was very close to the ana-
lytical value of (/p) 1/ 2 . The propagation of the wave is more clear from the
Darticle velocity plot depicted in Fig. 3. We note that we assumed the
existence of a yield surface only for the Litonski law. For other flow rules.
plastic deformations are assumed to occur at all times.

For nonpolar materials, only Litonski's law as generalized by Wright and
Batra was used. In this case, even though the shear stress drop was larger
near the center as compared to that for nonpolar materials, no wave phenomenon
was noticed. This becomes transparent from the velocity plot in Fig. 3.

For nonpolar materials, the velocity plots indicate that the particle
velocity increases rapidly from zero at y - 0 to as high as 2 at a point close

to y - 0 and then decreases to the prescribed value of I at y - 1.0. The
overshoot in the particle velocity is highest for the Litonski law. The flow
rule used affects the evolution of the particle velocity significantly. With
the Johnson-Cook law, no oscillations in the particle velocity are observed.
With the Bodner-Partom flow rule, no spatial oscillations in the particle
velocity are seen but after a shear band has initiated, the velocity of a

material particle oscillates in time. The spatial and temporal variation in
the particle velocity with the Power law is noticeably different from that
computed with the other three flow rules. A glance at the velocity and the
shear stress plot seems to indicate that there is no unloading wave emanating
out of the shear band in this case.

6. CONCLUSIONS. For overall adiabatic simple shearing thermomechanical
deformations of a viscoplastic block, we first calibrated the four different
flow rules so as to give essentially identical shear stress-shear strain
curves at a nominal strain-rate of 3,300 sec 1 . Then, the size of the initial
temperature perturbation was adjusted to yield the initiation of the shear
band, as indicated by a significant drop in the shear stress for very little
change in the nominal shear strain, at almost the same value of the nominal
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Fig. 3. The Evolution of the Velocity Field Within the Specimen After
the Shear Stress has Attained Its Peak Value.

(a) Litonski's Law, (b) Litonski's Flow Rule for Dipolar Materipls,
(c) Power Law (d) Bodner-Partom Law, (e) Johnson-Cook Law
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strain. These flow rules when used to compute the initiation and growth of
shear bands at a nominal strain-rate of 5,000 sec - I gave noticeably different
values of the nominal strain at which a shear band initiates. Also, the rate
of drop of the shear stress as predicted by the Bodner-Partom law and the
dipolar theory of Wright and Batra was closer to that observed experimentally.
For nonpolar materials, the Litonski law predicts the emanation of an unload-
ing elastic wave out of the shear band as it grows. The other three flow
rules do give the overshoot in the particle velocity at the edges of the band
as also given by the Litonski law, but do not predict the propagation of the
unloading elastic wave. This could possibly be due to the use of a yield
criterion for the Litonski law and not using any such criterion for the other
flow rules.

Acknowledgements: We thank Mr. Ko for his help in plotting Figs. 2 and 3.
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